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Abstract. Exact travelling wave solutions in terms of the Weierstrass @-function of the 
equation q,+a.c+ar  q?.+a>nzxx+ b ,q ,+b , (r lq3*+b,r=O are obtained. These 
solutions may describe particularly both the evolution of bounded conoidal wave and kink- 
shaped waves. 

In this letter exact travelling wave solutions of nonlinear evolution equation of surface 
waves in a convecting fluid 

tlt+aorlx+ult7rl,+aztl-+b~tl~+bl(tltl3x+bztl~-=O (1) 

wiU be obtained. This equation has been derived in [1,2] to describe oscillatory 
Rayleigh-Marangoni instability in a liquid layer with free boundaries. When b, =bz= 
0 equation (1) corresponds to the well known Burgers-Korteveg-de Vries (BKdv) equa- 
tion used, in particular, in the theory of nonlinear waves on viscous fluids [3]. Case 
a, = az=O leads to the equation that has been proposed in [4] to describe free surface 
waves caused by the Marangoni instability in a liquid layer with rigid lower boundary. 
The Kuramoto-Sivashinsky (KS) equation [5-71 arises when q=bl=O.  Finally, the 
general wave dynamics equation, derived in [6] to describe nonlinear surface waves on 
viscous fluid moving down on inclined plane, corresponds to the situation bl = 0. 

Exact solutions of the BKdv equation were obtained independently in [8-lo]. A 
travelling wavefront solution of the KS equation was derived in [5 ,8 ,  111. In [4] a 
proposal for a stationary solution was expressed by the Jacobi elliptic function cn for 
the case U, =a2=0. The situation bl =O was studied in detail in [8], and some exact 
travelling wave solutions were obtained. Finally, two travelling solitary wave solutions 
of equation (1) when & = O  were found in [12]. 

Following the Weiss-Tabor-Camevalle method 1131, the solutions of equation (1) 
for non-vanishing a, may be sought expanding the dependent variable in a Laurent 
series about the pole manifold F(x, t )  =0: 

(2) 

One can show that equation (1) does not possess the Painlev6 property for arbitrary F. 
However, series (2) may be truncated at the third term, which leads to the following 
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auto-BZcklund transformation for the function q: 

1262 
(3) 

if function f j  is a solution of equation ( 1 )  and function Fsatisfies some overdetermined 
system of equations. Solving this system one can obtain some exact travelling wave 
solutions of (1). A similar procedure was applied in [SI to derive solitary wavesolutions 
of the KS equation as well as the general wave dynamic wave equation. However, 
another method will be used here in order to obtain more general form solutions. 
Recently a method was developed [9], based on seeking exact solutions of a wide 
class of second-order nonlinear ordinary differential equations (ODE) in terms of the 
Weierstrass function @, and it was assumed that ODE of higher order may be solved 
similarly. Concerning only travelling wave solutions of the equation (l), one can reduce 
it to the third-order ODE of the form: 

(4) 
a1 2 

2 bzqase +azqse+borls+biq%+- 11 +(@- V ) q  +P=O 

where 0 = x -  Vt, P is a constant. The possible solution of the (1) may contain simple 
and second-order poles, as it results from the auto-Bicklund transformation (3). There- 
fore one can propose the following functional form of solution in terms of function 
@(e, gz,g3):  

where A, B, C, D are parameters. Substituting (5 )  into (4) and equating coefficients at 
each order of @ and @e to zero one can derive a system of algebraic equations in 
A, B, C, D, phase velocity V and Weierstrass function parameters gz, g3 : 

B(gzC-g3-4C3)=0 B(12C2-g,) = 0 

a1 a2 P=(V-@)D+4alBzC--D --g2A-2boBC+12b&ZC2 
2 2 

1 -bl  2ABCZ+eAB-2BCD 

(ao- V)A+al(21? + AD) +2b0B+ 2bl(BD- ABC) = O  

alA2+12a2A+24b2B+12blAB=0 

B(@ - Y+ Q(D- A C)) = 0 

a lAB+2a2B+b&+bl (AD+2bl~)  =O. 

( 2 

A( 12b2+blA) = 0 

The solutions of these equations are: 
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g2 and g3 are free parameters, if a2=alb2/bl ; 

when either 
2 c= - - 1 (.. -T) ah2 

300b: 

L799 

or C is a free parameter, if a2 = 6alb2/bl .  

cnoidal wave, propagating with 6xed phase velocity, of the form: 
The solution (5)  with parameters defined by (i) may describe a particular bounded 

where k is a free parameter, K is the Jacobi elliptic functions modulus. When K = 1, 
solution (7) corresponds to the travelling solitary wave solution found recently in [12]. 

The solution ( 5 )  with parameters defined by (ii) may describe a bounded travelling 
kink-shaped wave: 

When parameter C is defined by (6) we have two known kink-shaped solutions for 
positive and negative values of C C  [12]. When C is a free parameter, a new kink- 
shaped solution (8) arises. Its main feature is that this wave may propagate with any 
phase velocity value. 

Besides bounded solutions (7) and (8), solution (5)  may describe also unbounded 
ones in the form of localized and periodic discontinuities. The forms of these solutions 
may be simply presented using well known relationships between the Weierstrass p- 
function and Jacobi elliptic functions. 

Finally it is to be noted that the functional form (5) of the solution of equation (1) 
in terms of the Weierstrass @-function is not unique. Using the above mentioned 
procedure one can show that there exist at least one other solution of the form: 
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where 

G and g3 are free parameters. This solution allows us to describe only one bounded 
kink-shaped wave solution of a form coinciding with (8) for parameter C defined by 
(6) and for negative value of m. However, periodic discontinuities described by the 
solution (9) differ from the ones described by the solution (5). 

To sum up, two exact travelling wave solutions (5) and (9) of equation (1) are 
found, that allow us to obtain a new cnoidal wave solution (!&&-shaped solution) 
propagating with any phase velocity, as well as unbounded solutions in the form of 
localized and periodical discontinuities. 
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